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Abstract—Harvesting small-scale ambient energy consti-
tutes a promising source of power for wireless embedded de-
vices. Due to the unpredictable nature of the harvested energy,
adaptive radio duty cycling can lead to a long-term sustainable
operation. In energy constrained conditions, very low duty
cycles are vital to guarantee the sustainability of the system;
whereas, in the opposite case, the system should use the energy
surplus to increase the application performance. In this paper,
we implement and evaluate On-Demand MAC (ODMAC), the
first receiver-initiated MAC protocol specifically designed for
energy harvesting applications. In particular, we provide a
basic yet fully operational implementation of ODMAC for the
Texas Instruments’ MSP430 microprocessor family. Further-
more, we verify the theoretical results of our previous work
by achieving sustainable operation of an energy harvesting
node in various cases of energy input using a real test-bed.

Index Terms—Medium Access Control, Energy Harvesting,
Wireless Sensor Networks

I. INTRODUCTION

Energy Harvesting (EH) technologies have led to the
possibility of powering wireless embedded devices by
small-scale energy that is harvested from the surrounding
environment. Depending on the specific application, several
energy sources can be used, such as solar power and wind
power in outdoor deployments or heat from radiators in
indoor situations. Traditionally, wireless embedded devices
are powered by batteries. This power source constitutes a
limitation of the operational lifetime of the devices. Energy
harvesting can potentially produce and provide the system
with an infinite amount of energy. Therefore, the continuous
operation of the system is solely limited by hardware or
software failures. Furthermore, energy harvesting consti-
tutes an environmental friendly means of providing power
to embedded devices, as it uses renewable energy and
reduces battery wastes.

Energy harvesting introduces several challenges in wire-
less sensing systems. Among these, it is possible to find the
MAC (Medium Access Control) layer. The unpredictable,
ever-changing and small-scale nature of the energy input
makes efficient radio duty cycling the only means to achieve
sustainable operation. The duty cycles need to adapt to
significantly different levels of energy input. In particular,
in energy constrained conditions, the MAC protocol must
allow very low duty cycles in order to guarantee the longer-
term sustainability of the system. On the other hand, when

energy is abundant, the same protocol has to efficiently
use the energy surplus to increase the performance of the
application.

Radio duty cycling introduces the problem of finding a
moment in time where both the sender and the receiver
are active so that a link can be established. Traditionally,
MAC protocols for Wireless Sensor Networks (WSN) use
either synchronous or asynchronous approaches to handle
this challenge. MAC protocols based on synchronization,
like S-MAC [1], T-MAC [2] and DSMAC [3], require
a notion of globally synchronous clock. The coupling of
nodes’ activity periods hinders their ability to have a fully
independent duty cycle preventing the nodes from adapting
to the energy they can harvest. This crucial requirement
makes an asynchronous approach to this problem manda-
tory. The establishment of a link between two nodes can be
initiated either by the sender, via preamble sampling (e.g.
WiseMAC [4], B-MAC [5], X-MAC [6], or by the receiver,
via beaconing (e.g. RICER [7], RI-MAC [8]). Within the
asynchronous approach, the receiver-initiated paradigm has
proven to be more energy efficient when compared to the
sender-initiated scheme [8] [9].

On-Demand MAC (ODMAC), is the first receiver-
initiated scheme specifically designed for energy harvesting
applications [10]. It extends the receiver-initiated paradigm
towards the Energy Neutral Operation (ENO) [11] con-
cept. Unlike other protocols, ODMAC employs dynamic
duty cycling, specifically for the purpose of regulating the
power consumption. Furthermore, each node can be made
sustainable while the excess of energy, should there be any,
can be used for improving application performance metrics,
such as throughput, delay or security [12]. ODMAC has
been shown, through analysis and simulation, to efficiently
support the system requirements of sustainability and appli-
cation performance. The main goal of this work is to extend
the evaluation of the previously proposed ODMAC [10] in a
real test-bed by means of implementation. In particular, the
contribution of this paper can be summarized as follows.
First, we provide a basic yet fully operational implemen-
tation of ODMAC for the Texas Instruments’ MSP430
microprocessor family [13]. Furthermore, we focus on a
specific case study and we verify the theoretical results of
our previous work by achieving the sustainable operation



Fig. 1. ODMAC communication scheme

of the whole system in various cases of energy input using
a real test-bed.

The remainder of the paper is structured as follows. In
Section II, we provide a detailed presentation of ODMAC,
which is followed by the details of our implementation in
Section III. In Section IV, we experimentally evaluate the
protocol in various cases of input energy. Lastly, Section V
concludes the paper.

II. ON-DEMAND MAC (ODMAC)

The receiver-initiated paradigm constitutes the founda-
tion of all the receiver-initiated asynchronous protocols.
According to the paradigm, a node willing to receive data,
wakes up periodically and checks for incoming transmis-
sions. To do so, a Clear Channel Assessment (CCA) is per-
formed immediately after waking up, and a special message
called beacon is broadcasted if the channel is free. Then,
the node performs a Binary Exponential Backoff (BEB) and
transmits the beacon. After the beacon has been transmitted,
the receiver continues to listen to the channel for a short
predetermined period of time. Meanwhile, whenever a node
with data ready to be sent enters the active state, it listens
silently for a beacon from the intended receiver. Once the
beacon is received, the sender transmits its data packet, and
waits for another beacon which acknowledges (ACK) the
reception of the data. Conversely, if there is no incoming
data after transmitting the beacon, the receiver enters a sleep
state. At this point both the sender and receiver resume their
cycles normally.

The receiver-initiated paradigm significantly reduces the
amount of time the channel is occupied, allowing more
contending nodes to communicate with each other, thus
increasing the capacity and throughput of the network. It is
also more efficient in detecting collisions, because access
to the channel is mainly controlled by the receiver. Since
receivers only wait a short period of time for incoming data,
after beacon transmission, idle listening is greatly reduced.

ODMAC builds upon the receiver-initiated paradigm, as
shown in Fig. 1. To adapt to the ever-changing unpre-
dictable nature of the energy input, nodes dynamically
adjust their duty cycle in a completely independent and dis-
tributed manner. Nodes in the network have the double role
of receivers for forwarding tasks and senders for measuring
tasks. ODMAC decouples the duty cycles of these two jobs

Fig. 2. Average node consumption for various sensing periods (S) [12]

within a single node. Hence, a node has a beacon duty cycle
and a sensing duty cycle. The beacon duty cycle controls
the trade-off between energy consumption and end-to-end
delay, while the sensing duty cycle controls the trade-off be-
tween energy consumption and throughput. Thus, ODMAC
grants the network administrator the ability to establish the
trade-off depending on the particular application.

ODMAC uses an adaptive duty cycle mechanism based
on the ENO principle [11]. According to the ENO principle,
a node is sustainable if, over a time period that its energy
buffers can support, the energy consumed is less than or
equal to the energy harvested. All nodes in the network
dynamically adjust the beacon and sensing duty cycle, in
order to achieve and maintain an ENO-Max state, which is
defined as an ENO state with maximum performance. This
means that when the node is consuming more energy than
is harvested, the duty cycles are decreased to reduce the
energy consumption. In the same manner, when the energy
consumed is less than the energy harvested, the duty cycles
are increased.

Increasing the beacon period has two contrasting effects
in the power consumption. On one side, the power con-
sumption connected to the beaconing process is decreased.
On the other side, the nodes waiting for beacons in order
to perform data transmission have to spend more time
in idle listening, wasting energy. Reducing the beacon
period produces opposite results. Previous analytic results
in random multi-hop topologies, suggest that the system has
an operating state where the average power consumption is
minimized, as shown in Fig. 2 (see [12] for the details of
the analysis). Thus, the system has the following operating
alternatives. In case of delay-sensitive applications, it can
trade power for shorter delays by adapting the beaconing
period between zero and the local minimum. Similarly, in
cases of applications where throughput is the main priority,
the system can trade power for throughput by adapting the
sensing period while maintaining the beaconing period at
the local minimum. Alternatively, the system can operate



at the minimum power consumption level and expend the
energy elsewhere (e.g. security-sensitive applications).

For scenarios with multiple duty-cycling receivers,
ODMAC defines a forwarding policy for anycast routing
support, named Opportunistic Forwarding. Instead of wait-
ing for a specific receiver to wake up, a sender oppor-
tunistically forwards data to any eligible receiver, based
on the beacon obtained first. This mechanism requires a
routing protocol that assigns each sender a list of approved
receivers. The more the energy a receiver harvests, the
higher the probability of receiving beacons from it. Thus,
this policy creates a more robust network, that is adaptive to
changes in energy, by maintaining the load balanced. Fur-
thermore, the idle listening time of senders, and therefore
their energy consumption, is significantly reduced [9].

III. IMPLEMENTATION OF ODMAC
Our design is based upon the holistic approach, which

claims that the whole system should be designed and
function as a whole, rather than being organized in layers.
This approach sacrifices the versatility of the system toward
the efficient use of resources, as all parts of the system, from
the hardware to the firmware (i.e. protocols and system
services), need to be specifically designed for the desired
application. As a result, the implementation of ODMAC
constitutes integral part of a complete firmware.

The protocol was implemented on Texas Instruments’
eZ430-rf2500 sensor nodes [14]. The nodes consist of
an MSP430 microcontroller (MCU) and a CC2500 radio,
operating in the 2.4 GHz band. In addition to batteries,
the nodes can be powered by external energy harvesting
boards. In particular, we use Cymbet’s CBC-EVAL-10
[15] solar energy harvester board and CBC-EVAL-09 [16]
general energy harvester board, that can harvest energy
from various sources. The boards store the harvested energy
into embedded batteries (100 µAh capacity). The boards
can also accommodate external rechargeable batteries for
scenarios that require larger energy buffers.

Duty cycles are implemented through wake-up interrupts
using the timer of the MCU. A time quantum is defined. It
controls the sleeping time between two subsequent wake-
up events. On top of that, the two independent duty cycles
for the sensing and the forwarding tasks are implemented
as multiples of the basic time quantum. In each wake-
up interrupt the MCU checks if it’s time for one of the
two tasks, sets up the next wake-up interrupt and goes
to the sleeping state. While in the sleep state, the MCU
is configured to Low Power Mode 3 (LPM3), in which
only the auxiliary low-frequency clock, used to schedule
the interrupts, is active. In LPM3, MSP430 consumes less
than 1 µA at 1 MHz [17]. Additionally, the time quantum
is periodically adjusted, by adding a uniformly random
number of cycles in [−2r−1, 2r−1] to the defined value.
This randomization prevents unfortunate synchronizations
and decreases the collisions by enforcing random channel
access between different nodes. Even though the period

Fig. 3. ODMAC as a Finite State Machine

of the time quantum randomization can be individually
configured, it is currently set to the period of the sensing
tasks. The level of the randomization, r, can be configured
in accordance to the desired behavior.

The heart of ODMAC is implemented as a finite state
machine (FSM), Fig. 3. Its functionality is mainly based
upon two routines, namely Send and Receive. Unless one
of these two handler is invoked, ODMAC is in sleeping
state and the radio is turned off. The Send routine generates
and formats a packet around the payload (i.e. the result
of a sensing operation). When the packet is ready, the
radio is switched on into listening mode and the state
machine awaits for an interrupt signaling the reception of an
appropriate beacon. Should this happen, ODMAC continues
its execution and the data packet is transmitted. At the end
of a packet transmission, the radio is switched back off.

Different packet types might be received when waiting
for a suitable beacon. While non beacon packets are simply
discarded, potentially appropriate beacons are evaluated.
The decision of whether or not a specific beacon is
appropriate, is taken by a routine that implements the
routing functionalities and that will be described further
on. The Receive handler is invoked during the forwarding
duty cycle. In particular, it generates a beacon packet and
transmits it to the node’s neighborhood. At this point, the
radio is switched into listening mode and the protocol
awaits for a data packet for a defined amount of time. If
no incoming data is received during this period, the radio
is set back to sleep mode and the routine ends. On the
other hand, upon receiving a data packet, the information
contained is extracted and the radio set back to sleep mode.
In order to forward the newly received packet toward the
sink, a new invocation of Send is performed.

To accompany and improve ODMAC, a security suite
inspired by TinySec [18] has been designed and imple-
mented. It provides four modes: No security, Authentica-
tion, Encryption, Both allowing to choose among them
on a per-message basis. Both confidentiality and integrity
are provided through the same encryption primitive. The
algorithm of choice is Skipjack [19], but other implementa-
tions are underway (e.g. AES, PRESENT [20]). Encryption



T
y
p
e

A
u
t
h

E
n
c

... Node ID Seq num Data

... Node ID Seq num Data
T
y
p
e

A
u
t
h

E
n
c

T
y
p
e

A
u
t
h

E
n
c

...

T
y
p
e

A
u
t
h

E
n
c

...

Layer Beacon ID

Beacon IDLayer

MAC

MAC

0 2 3 4 8 16 24 87

0 2 3 4 8 16 23

0 2 3 4 8 16 24        55

0 2 3 4 8 16 24 88     119

Data Packet

Authenticated Data Packet

Beacon Packet

Authenticated Beacon Packet

Fig. 4. Packet Formats (field size in bits).

is always performed by using secure modes of operation,
specifically Cipher-block Chaining with Cyphertext Steal-
ing to keep the message size unmodified. Authentication of
beacons guarantees that these messages cannot be forged.
The suite works at the same layer of ODMAC, therefore
Message Authentication Codes and encryptions are verified
and reconstructed at each hop. This requires more CPU
intensive work, but allows for forged or malformed packet
to be identified and discarded right away, thus saving
transmissions of useless data and assuring greater energy
savings. Key managements schemes and adaptive security
that take into account the energy harvesting rate of the
nodes are considered future extensions of the security layer.

Additionally, we implemented a simple and fully dis-
tributed routing protocol that exploits the benefits of op-
portunistic forwarding by selecting multiple appropriate
forwarders. Specifically, we define layer(u) as the distance
of node u form the sink, expressed in number of hops. The
sink is initialized at layer 0. All nodes advertise their layer
through their beacons and nodes update their layer upon
beacon reception. Let B be the set of layers received by
node u then layer(u) := min(B) + 1. Additionally, layers
are reset (layer(u) = ∞) if no beacon is received after a
predefined amount of time. Appropriate beacons (i.e. bea-
cons useful for transmission of data) are considered those
advertising a layer lower than the one of the receiving node,
thus leading towards the sink. More formally, a beacon b
is appropriate for node u ⇐⇒ layer(b) < layer(u).
By using the beacons to distribute information required
for routing decisions, we avoid transmitting extra control
packets and save energy. Additional routing metrics that
account for energy harvesting and application performance
are planned to be incorporated in the routing layer.

Fig. 4 depicts the packet formats of the implementation.
The packet headers contain fields for all the services
implemented in the firmware beyond the MAC protocol.
In particular two basic packets are defined, namely the
beacon and the data packet. The first byte is common in
all packets. The first two bits in the header are used to

determine the packet type. The two next bits are used to
state the security options of the specific packet. Hence, the
receiver of the packet can determine if the packet needs
to be decrypted and whether or not it is authenticated. In
the case of authenticated packets, a 4-byte footer contains
the Message Authentication Code (MAC1). The next 4 bits
are reserved for future extensions. In case of a beacon
packet, the header also includes the layer of the node
and a sequence number, named Beacon ID. In case of a
data packet, the header includes the ID of the node and a
sequence number of the packet used to track lost packets.
Finally, the payload of the data packet follows.

IV. EXPERIMENTAL EVALUATION

In our previous work, we showed through analysis [9]
and simulations [10] that, by using ODMAC, a node can
adapt its activity in a completely distributed manner and
independently from other nodes. As a result, the operation
of the node is sustainable, adapting to different levels of
input energy. Furthermore, by decoupling the duty cycle
of sensing and forwarding tasks, any energy surplus can
be used to improve different performance metrics, such as
throughput or delay, and can be configured in accordance
to the running application. In this section, we attempt to
verify this finding. In particular, we focus on the case study
of applications that prioritize the throughput. Monitoring
an area for long-term statistical off-line analysis constitutes
an example of a delay-tolerant application, in which the
amount of measurements is the first priority. Thus, we
expose a node to different levels of energy input and we
demonstrate how the node can find a sustainable operation
state while the energy is used towards the selected perfor-
mance metric, i.e. throughput.

Even though ODMAC is a multi-hop MAC protocol, in
this work we focus on a single transmitting node, u, which
is part of a single link to a receiver node. Hence, the routing
layer is not used. From the perspective of u, the activity
of the receiver is unknown. We consider two identical
receivers, one with high and one with low Duty Cycle (DC).
We programmed the sleep time between the transmission
of two beacons at 400 cycles for the High DC Receiver and
800 cycles for the Low DC Receiver, which corresponds to
approximately 33 ms and 66 ms respectively. Additionally,
we turned off the forwarding duty cycles of u, focusing
entirely on the sensing duty cycles. Specifically, node u
periodically interrupts its sleeping to execute an active
period, which consists of the following actions: a) sense the
MCU temperature using the internal temperature sensor, b)
generate a packet, c) encrypt and authenticate the packet,
d) wait for a beacon from the receiver, e) transmit the
packet. The consumption of a typical activity period is
shown in Fig. 5. Specifically, the figure shows the voltage
of a 10 Ω shunt resistor, connected between the load and

1MAC in Fig. 4 stands for Message Authentication Code. Not to be
confused with Medium Access Control.



Fig. 5. Consumption of a typical active period. The current drain is
obtained by dividing the shown voltage by the shunt resistor’s value
(10 Ω).

the power source. In the figure, one can clearly notice the
time the node is listening for a beacon, which follows some
initial MCU activity, that that includes using the node’s
temperature sensor, the ADC and an LED. After the beacon
reception, it is possible to see the consumption spike related
to the packet transmission. As expected, the main source of
power consumption comes from the time the radio spends
in listening mode, waiting for a beacon. Given this specific
configuration and network topology, the average duration
of an active period was found to be 43 ms with a standard
deviation of 11 ms in the case of the High DC Receiver
and 61 ms with a standard deviation of 23 ms in the case
of the Low DC Receiver.

Node u is powered by a photo-voltaic panel connected
to a CBC-EVAL-09 energy harvester board. Due to the
specific hardware used, the duty cycle implementation, de-
scribed in Section III, had to be slightly adapted. While the
node still has a hard-coded value for the wake-up interrupts,
not all of these are actually used to transmit a packet. The
harvester in use is designed around factory specifications
that support relatively short high-consumption activity peri-
ods (e.g. whenever the radio is on). The energy accumulated
in the solid state batteries of the board is used to charge
the following stage, composed of a 1000 µF capacitor that
is then used as the final energy output. Such component
is designed to handle long drains of low current, but short
pulse current drain would fully deplete its charge, without
giving time to the batteries to recharge it. According to
[21], the embedded solid state batteries cannot charge the
capacitor in less than approximately 10 seconds. Depleting
the capacitor resets the node and triggers a protection mech-
anism, that disconnects the load until the capacitor is fully
charged. According to our measurements, the capacitor can
support activity periods with duration in the order of tens
of ms (up to ≈ 150 ms).

Considering that the possibility of replacing this critical
component would only solve the problem for this specific
application, we decided to devise a solution that could
be applicable in different scenarios. The idea is to mea-

Fig. 6. The output capacitor voltage demonstrates a typical series of
activity periods.

sure the voltage across the capacitor and, after opportune
conditioning, to feed it back to the node through an A/D
conversion channel. Being able to know the actual charge
state of the capacitor allowed the application to use this
value to decide whether or not the energy available would
be enough to enter an activity period. We empirically found
such threshold and validated it by matching the energy
available in the capacitor against the energy required by the
node to send an packet in the worst case scenario. Whenever
a wake-up event arises, the node can simply read the actual
capacitor voltage and compare it to the aforementioned
threshold, sending a packet only if the value is high enough.

As a result, the duty cycle of the node is a multiple of
the sensing duty cycle, based on the state of the capacitor.
Specifically, we set the wake-up interrupts every 12048
cycles (≈ 1 s). Given the minimum time required for the
capacitor to be charged [21], we check the state of the
capacitor every 10 wake-up events (≈ 10 s) and transmit
when the voltage across the capacitor is above 3.3 V . In
turns, this solution allows us to dynamically adapt the duty
cycle (and therefore the amount of packets sent) according
to the amount of energy harvested, making the application
energy aware. Fig. 6 depicts the voltage of the capacitor in a
succession of packet transmission. Observe how the energy
required for different transmissions varies with respect to
the duration of the listening period, while the time for the
capacitor to recover changes accordingly.

In this setting, we conducted the following experiment.
We exposed the board to different levels of input power,
by adjusting the distance between the light source and
the photo-voltaic panels, and we measured the amount of
packets that the node managed to successfully transmit
in 30 minutes. The input power is estimated using the
voltage measured across the photo-voltaic panel and the
current measured through a 10 Ω shunt resistor. Fig. 7
shows the results of several experiments. All experiments
were initiated after the depletion of all the stored energy.
Given the fact that the capacitor can not store enough
energy for more than very few transmissions, the 30-minute
continuous operation proves the sustainability of the node.



Fig. 7. Sustainable performance at different levels of input power.

Furthermore, the excess of harvested energy is used to
improve the throughput of the application. As expected, the
throughput increases linearly with the amount of available
energy, while it is capped by the maximum throughput sup-
ported by the energy harvesting board, i.e. 1 transmission
every 10 seconds. The difference in throughput, in the cases
of the high and low duty cycle receivers, shows how u was
able to adapt to different environmental conditions in terms
of energy consumption.

V. CONCLUSION AND FUTURE WORK

We presented a basic implementation of ODMAC [10],
a MAC protocol that is based on the receiver-initiated
paradigm and is aiming to support completely independent
duty cycles, so that the nodes can adjust to the energy
that they can harvest. Furthermore, we present experiments
that show how an ODMAC-compliant transmitter is able
to independently choose its duty cycle to find a sustainable
state of operation and use the available energy to promote
throughput, which is the selected performance metric in our
case study. The implementation difficulties we encountered
suggest that hardware can constitute a major limitation on
implementing features at firmware level. As a result, we
highlight the importance of designing and optimizing the
hardware and the firmware together for a target application.

As next steps, we plan to extend the implementation
of ODMAC with active collision avoidance mechanisms
and evaluate it in scenarios with many nodes. Furthermore,
we plan to enrich the security extensions of the protocol
with additional encryption algorithms and dynamic key
distribution mechanisms. Apart from applications that pri-
oritize throughput, we also plan to consider applications
that prioritize other performance metrics, such as delay and
security, aiming to verify our previous theoretical work and
show how the system is able to operate in a sustainable
manner, while promoting different performance priorities.
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