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Abstract: In this paper, we present a file allocation and caching scheme that guarantees high assurance, availability,
and load balancing in a large-scale distributed file system that can support dynamic updates of authorization
policies. The scheme uses fragmentation and replication to store files with high security requirements in a
system composed of a majority of low-security servers. We develop mechanisms to fragment files, to allocate
them into multiple servers, and to cache them as close as possible to their readers while preserving the security
requirement of the files, providing load-balancing, and reducing delay of read operations. The system offers a
trade-off between performance and security that is dynamically tunable according to the current level of threat.
We validate our mechanisms with extensive simulations in an Internet-like network.

1 INTRODUCTION

The ever-increasing resources and performances of
modern technological systems have massively con-
tributed to the development of applications that allow
for resources to be easily and widely distributed. Sce-
narios where contents are pervasively shared, ubiqui-
tously accessible and always available have become
more and more common. Grid computing and cloud
computing solutions make intensive use of these con-
cepts in order to provide high-performance and scal-
able services.

Security aspects have therefore become even more
important, confidentiality issues can make or break
commercial applications. Resources such as files
should be readily and constantly available from any-
where to whoever has the right to access them, and
safely kept from those who do not have such rights.
Distributed file systems such as OceanStore (Kubi-
atowicz et al., 2000), PASIS (Wylie et al., 2000) or
Tahoe (Wilcox-O’Hearn and Warner, 2008) try to sat-
isfy these properties. Different approaches and tech-
niques are used to address different security aspects.
Confidentiality is usually achieved through encryp-
tion, files are enciphered before being stored. Avail-
ability is generally obtained through replication of en-
crypted replicas of the file. However, file encryption
makes it difficult to get high security and support for
updates to the authorization policy at the same time.

Indeed, if the encryption is performed with a single
key only, either every user has a complete view of the
files stored in the system or costly re-encryptions are
needed at every change of the authorization policy.
Moreover, if a legitimate user leaves the system, re-
keying and (again) re-encryption are needed to pro-
vide forward-security. In order to avoid such prob-
lems and maintain good performance, dynamic poli-
cies are often not allowed, in this way operations like
re-encryption are not needed. The price of this is paid
in terms of flexibility. For example not being able to
dynamically redefine the access policy for a file re-
quires a more accurate planning when the access lists
are created and, in any case, makes it impossible to
cope with emergencies in critical applications.

In this paper we present a model for file alloca-
tion in large-scale distributed systems that addresses
these problems. We provide provable assurance in a
system that guarantees flexibility of the authorization
policy. In our system, files are fragmented and stored
in the clear at several nodes (or, similarly to what is
done in (di Vimercati et al., 2007), stored with a base
encryption layer whose key is known to all the pos-
sible legitimate users of the system). We character-
ize the system as highly heterogeneous, composed by
elements whose characteristics and performance can
vary significantly.

We then present a fragmentation and allocation
scheme for storing files within the system. This



scheme is compliant to our provable assurance model
and produces overall load balance. The allocation
procedure is efficient in the sense that very few and
locally obtainable information are needed to perform
the task. Furthermore, we allow the existence of files
with assurance requirements much greater than the re-
silience guaranteed by each single node in the system.
Lastly, we introduce a read-based, threat-adaptive,
caching system that guarantees good load-balancing
and high availability (i.e. low delay) for the readers.

2 RELATED WORK

Distributed file allocation has been addressed in many
different ways. The Cooperative File System (CFS)
(Dabek et al., 2001) uses DHT to provide provable
efficiency, robustness and load-balance in a read-only
context. FarSite (Adya et al., 2002) achieves Byzan-
tine fault tolerance, secrecy, and scalability by adding
an encryption layer and local file caching. Similarly
OceanStore (Kubiatowicz et al., 2000) allows the ex-
istence of untrusted servers and yields continuous ac-
cess thanks to encryption and redundancy. It also
allows to improve performances and avoid DOS at-
tacks by monitoring the usage patterns. Again, PA-
SIS (Wylie et al., 2000) is a Survivable Storage Sys-
tem that builds on decentralized storage infrastruc-
tures to offer confidentiality, integrity, and availabil-
ity. In (Tu et al., 2010) the authors use partitioning
and replication in a two-level topology context. They
propose an algorithm to find a subset of servers to al-
locate replicas to that would minimize the number of
exchanged messages. The work in (Ye et al., 2010)
instead focuses on a scenario that does not make use
of a pure data partitioning approach in order to min-
imize the propagation latency and consistency veri-
fication messages. They provide a two-level storage
system where servers are divided into groups accord-
ing to their location and use secret sharing schemes
to spread the shares within a group and lazy update
to propagate the information within different groups.
The authors in (Lakshmanan et al., 2003) present a
distributed data store system that makes use of secret
sharing and replication. This allows for the existence
of a partial number of compromised nodes (Byzan-
tine failures). Nevertheless the shares are not allowed
to be moved and optimal allocation is not considered.

3 SYSTEM MODEL

We consider a distributed system D . The system is
hierarchically organized in a set S of subnets, each

Figure 1: System structure.

subnet s ∈ S consisting of a number of nodes. The set
of nodes of a subnet s is denoted by Ns, and the set
of all the nodes of the system is denoted by N . The
system is Internet-like for both size and typical usage.
The concept of node can be assimilated to a generic
host, while we can picture a subnet as a collection of
hosts under the same administration domain and with
local resources (e.g. firewalls). At a much greater
scale, we can use the same model to represent a sys-
tem in which subnets are autonomous systems with
their own border routers and access policies.

The nodes in each subnet are internally intercon-
nected. We assume that every two nodes of the same
subnet can communicate directly by exchanging mes-
sages within the subnet itself. Subnets are also in-
terconnected according to a graph of subnets. Two
nodes of different subnets can communicate as well,
but messages have to traverse the links of the graph
of subnets and get into the subnet of the destination
by going through its filters and protections (like, for
example, a firewall). Both nodes and subnets have
their own unique id, just like their Internet counter-
parts have a unique IP address. Figure 1 summarizes
the structure of the distributed system.

Nodes and subnets are entities able to store and
protect resources. In order to formalize this concept,
we introduce the function R which defines the re-
silience provided by a node or by a subnet. For each
node u, R (u) is a numeric value that represents the
quantity of (ideal) effort needed by an attacker to
crack node u. We assume that the system is hetero-
geneous, consisting in nodes with different resilience.
A subnet is not just an hypothetical component cre-
ated only for convenience, it is a real part of the sys-
tem. If we recall the comparison between subnets
and AS, we can see that a subnet could for example
deny unauthorized incoming connection or spot iden-
tity theft attempts. Shortly we can say that subnets
have a rather active role in the whole system dynam-
ics. For this reason we add a resilience value to every



subnet. For ease of work we chose this value R (s)
to be the same for every subnet. Furthermore, we do
not provide a real implementation of R as it would
be too much system specific, anyway we think that
such function could be defined by taking into account
all the parameters of a given system such as the hard-
ware equipment of a node, the procedural security of
the site where the nodes are, the IT security aspects
(e.g. firewalls, network organization, . . . ), etc.

Another main component of our model are the
files, defined by the set F . We assume that the files
are read-only and that different files have different
requirements in terms of confidentiality. To express
this idea we introduce the function H . For each file
f ∈ F , the value H ( f ) is defined as the assurance re-
quirement of file f . In other words, we want the sys-
tem to guarantee that the adversary cannot compro-
mise file f unless it spends at least effort H ( f ). Files
are created by the users of the systems. Users can be
servers of a cloud, mobile users that connect to the
system to read shared files, or any similar entity de-
pending on the application scenario. We assume that
users log into one of the nodes of the system, typically
one node in the closest subnet. When a user creates a
file, it assigns the file an assurance requirement H ( f ),
an access policy that depends on the application, and
stores the file in the system.

Nodes and users have access to a trusted public
key cryptography infrastructure. Therefore, we as-
sume that every node and every user have a certified
public key and the corresponding private key.

3.1 The Adversary

The adversary has the goal of compromising one or
more files in the system. To achieve this goal, the
adversary can break into subnets and compromise
nodes. However, the adversary has to pay effort R (s)
to break into subnet s, and effort R (u) to compro-
mise node u. When a subnet or a node are compro-
mised, they are so forever—there is no recovery pro-
cedure. We also assume that the adversary has a com-
plete knowledge of file allocation—if it has the goal
of compromising file f , it knows which nodes are
used to store f . The adversary compromises all the
fragments that are stored, even temporarily, in nodes
that are currently under its control. A file is compro-
mised when at least one copy of every fragment if has
been divided into, is compromised.

3.2 The Problem

The problem that we consider in this paper is to de-
sign a file allocation and caching scheme with the fol-

lowing goals:

1. We should be able to securely store files whose
resilience requirement is larger than the resilience
of any subnet and of any node in the system;

2. performance of read operations should be maxi-
mized;

3. the system load should be balanced;

4. the adversary cannot compromise file f by mak-
ing an effort smaller than R ( f ).

To get Property 2, files can be dynamically replicated
in more than one node in the system or moved from
one node to another according to the read activities
of the users. The challenge is to preserve security re-
quirements and, at the same time, to perform efficient
caching and load-balancing.

4 ALLOCATION AND
FRAGMENTATION

One of the ideas in this study is to design a file al-
location and caching mechanism that can obtain con-
stantly high standards of security from a system with
many weak nodes, a few stronger ones, and a very
small number of high resilience nodes. To do so
we push the limits of the system by accepting situ-
ations where the assurance required for a file is much
greater than the resilience offered by a single node
(H ( f )� R (u) for most files f and nodes u) as de-
scribed by Property 1. Doing so has the consequence
that it is not possible to directly allocate a whole file
over a single node. Every file f will have to with-
stand a fragmentation process and each fragment fi
will have to be rated with an assurance value H ( fi).

4.1 Allocation Security

Let us assume that file f has been fragmented into g
fragments f1, . . . , fg, and that all fragments are neces-
sary to reconstruct the file (we will see that there are
many efficient mechanisms to achieve this goal when
we describe the fragmentation process). Each frag-
ment fi is assigned a required assurance H ( fi). Then,
we allocate the fragments into nodes with appropriate
resilience and guarantee the assurance of the file by
means of providing assurance to the fragments. To
get this results, we impose a few constraints on the al-
location process. With these constraints, it is easier to
reason about the assurance provided by the allocation.

The first constraint is very intuitive. If frag-
ments fi and f j are allowed to be hosted on the same



node u, we would be in a situation in which the ad-
versary can compromise node u and instantaneously
gain access to both fi and f j with effort R (u). This
can reduce the assurance that the system is providing
to file f . Therefore, we introduce the single fragment
constraint.

Constraint 1 (Single fragment). No two fragments of
a same file can be hosted on the same node at any
time.

A second constraint deals with the number of
nodes allowed into every subnet. We define the sys-
tem parameter κ as the maximum number of frag-
ments of the same file that any subnet can hold. This
is called the κ-constraint and is formally described as
follows.

Constraint 2 (κ-constraint). No more than κ frag-
ments of the same file can be kept by the same subnet
at any time.

This constraint is not crucial for the correct func-
tioning of the system, but allows for a trade-off be-
tween security and performance. Intuitively, smaller
values of κ force the allocator to use a greater number
of subnets for the fragments of the same file. There-
fore, assurance is higher since the adversary has to
break into more subnets to compromise the file, while
performance of read operations is poorer, since the
file is more spread and getting all the fragments takes
longer. High values of κ, instead, produce the exact
opposite results. To complicate the analysis, a smaller
value of κ allows the system to generate fewer frag-
ments to get the same file assurance, therefore, the
trade-off is not obvious.

The third constraint is the eligibility constraint
and it has to be satisfied for a fragment to be allocated
to a node.

Constraint 3 (Eligibility). A fragment fi can be allo-
cated to a node u j if and only if R (u j) ≥ H ( fi).

An allocation A f for fragments f1, . . . , fg of file f
is a function A f : {1, . . . ,g} → P (N ), where P (N )
is the set of all subsets of N . Subset A f (i) is the
subset of nodes that store a replica of fragment fi. An
allocation is valid if it satisfies Constraints 1, 2, and 3.

If the adversary is willing to compromise file f al-
located with valid allocation A f , the effort to be paid
is composed by two factors: One to break into enough
nodes that store fragments of the file, and one to break
into the subnets that host those nodes. Thanks to Con-
straint 1, the first factor is at least equal to the effort
needed to compromise the weakest node in A f (1), the
weakest node in A f (2), and so on, up to the weakest
node in A f (g). Moreover, thanks to Constraint 2, the
adversary has to break into at least dg/κe subnets. To

summarize, we can introduce function J (A f ) as the
assurance achieved by f through A f .

J (A f )≥
⌈g

κ

⌉
·R (s)+∑

i
min

u∈A f (i)
{R (u)}. (1)

If the amount of assurance required for f is grater than
the resilience offered by any valid allocation, we say
that the allocation is unsatisfiable.

4.2 The Fragmentation Process

One of the most important point to address is finding
an appropriate number of fragments to use for each
file in accordance to its assurance requirement. The
fragmentation process for a file f can be implemented
as a (g,g) Shamir’s secret sharing scheme (Shamir,
1979), where again g is the number of fragments that
f is divided into, or with faster erasure codes (whose
security is not information-theoretic) such as Tornado
codes (Byers et al., 1998), Turbo codes (Berrou et al.,
1993), or Reed-Solomon codes (Reed and Solomon,
1960) among many others.

The challenge here is to perform the fragmenta-
tion process in such a way that the assurance of the
file is guaranteed and that fragments can later be allo-
cated to nodes in such a way that the load is balanced.
Since the system is very large, we just assume to know
what is the distribution of the resilience of the nodes.
This information does not depend on the size of the
network.

Let f ∈ F be a generic file and, as usual, let us as-
sume that it has already been divided into g fragments.
Let A f be a valid allocation and let us assume that ev-
ery fragment is stored in one single replica. That is,
for all i |A f (i)|= 1. In this case, we will refer to such
an allocation as initial allocation and function J (A f )
is simply

J (A f ) =
⌈g

κ

⌉
R (s)+

g

∑
i=1

R (ui) (2)

where ui is the only node in A f (i). Let Y be the ran-
dom variable that models the resilience provided by
the nodes. We assume that this distribution has a fi-
nite expectation. It is then possible to say that, on
average, each node will contribute with a resilience
of E(Y ). Hence, we can compute the average number
of fragments needed to make the achieved assurance
at least H ( f ) as follows:

J (A f ) =
⌈g

κ

⌉
R (s)+gE(Y )≥H ( f ) (3)

Let
∗
g be the smallest value for which the 3 is true.

Then, we can expect that the average number of frag-
ments of file f needed in our system is

∗
g.



The actual fragmentation process consists in iter-
atively sampling from random variable Y the assur-
ance requirement for each fragment of file f . Every
κ fragments, we know that one more subnet will be
used when allocating the file and that one more subnet
has to be broken by the adversary to compromise the
file. As a consequence, additional subnet resilience
R (s) is taken into account. The process is stopped
when the number of fragments is enough to guarantee
the required assurance of file f . Of course, the actual
number of fragments for the file can be different from
the average computed in the previous section. Finally,
we can state the following simple result.

Proposition 1. The fragmentation process guaran-
tees that: 1. The distribution of the assurance re-
quirement of the fragments is equal to the distribution
of the resilience of the nodes; and 2. if A f is a valid
allocation, then J (A f )≥H ( f ).

Of course, this result holds only if the allocation is
static. With caching, allocation changes dynamically
and therefore we have to take particular care to guar-
antee that the adversary cannot compromise the file
with smaller effort.

4.3 Distribution of Node Resilience

The random distribution we use for node resilience
is the Bounded Pareto distribution described as
BPa(min,max,α) where [min,max] is the interval of
values and α is the shape. We use two different
random variables, both following the aforementioned
distribution, albeit with different parameters. The
variable Y has already been introduced, the second
one is X and we will use it in our experiments to gen-
erate the assurance required by the files generated in
the system.

Thanks to this it is possible to perform various ex-
periments. For instance in Figure 2 we can see an ex-
ample of the fragmentation of 100 files. On the x axis
there is the id of the files (we have sorted the files ids
according to increasing assurance requirement), while
on the y axis there is the number of fragments the file
has been divided into. In blue we have the expected
number of fragments as computed above and in red
there is the actual number of fragments obtained via
the fragmentation process. For this experiment we
used the distribution BPa(100,200,2.0). The aver-
age difference between expected and real is 0.01 frag-
ments.

4.4 File to Subnet Allocation

After a file has been created and fragmented, every
fragment must be assigned a subnet to create an initial
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Figure 2: Expected number of fragments (blue) and Real
number of fragments (red).

allocation. We call this the file to subnet allocation.
The goal of this phase is to create a list of eligible
subnets for each fragment and then to select the “best”
element out of this list. It is in this phase that the κ-
constraint is enforced.

Our design choice is to enforce a static matching
between the fragments and the eligible subnetworks.
Formally, given a fragment fi, we say that

s is eligible for fi⇐⇒ H1(s| f )≡ fi mod
⌈g

κ

⌉
(4)

where H1 : N→ N is an arbitrarily chosen hash func-
tion1 and | is the juxtaposition operator. The hash
function is not used for security purposes, but rather
as a randomizer (any quasi-random function could be
used). This means that properties like collision re-
sistance, pre-image resistance and second pre-image
resistance are not crucial.

With this mechanism, no compromised subnet can
attract more fragments then it is supposed to store.
This limits the possible damage that the adversary can
perform by compromising a particular subnet.

By using this technique we are actually defining⌈ g
κ

⌉
= t colors {0, . . . , t− 1} for all the subnets. We

are then assigning one color c to every fragment fi and
saying that all and only the c-colored subnets are eli-
gible for fi. Furthermore we are also assuring that the
κ-constraint is satisfied because for any given subnet,
at most κ fragments of the same file will be eligible.
In Equation 4 the hash function is applied to s juxta-
posed to the file id f . We use this expedient to even
out the unbalance due to the fact that g is not a mul-
tiple of κ. Furthermore, this also has the effect that
every file induces a different coloring on the system.

This procedure does not guarantee that every color
is used, but we can show that with high probability

1Not to be confused with function H , the assurance re-
quirement.



this holds true if |S | � t. If we assume that the func-
tion H1 is uniformly distributed over its codomain, we
are actually assigning |S | fragments to t colors and, if
|S | = Ω(t log t) (which is the case in a large network
since it is reasonable that

⌈ g
κ

⌉
is much smaller than

|S |), we can also show that colors are well balanced.
This is done by using well-known results on a famous
problem referred to as balls and bins (Mitzenmacher,
2001).

The second concept that we need to introduce has
to do with the resilience associated to a subnet. We
define the function Q : S ×F ′→{0,1} as follows

Q (s, fi) :=

{
1 if ∃ u ∈Ns | R (u)≥H ( fi),

0 otherwise.
(5)

Basically this function assumes value 1 when the sub-
net s contains at least one node that can provide a re-
silience value equal to or greater than the assurance
value required by the fragment fi and assumes value
0 otherwise.

In general, multiple subnets are eligible for a given
fragment, introducing the need for a tie-breaker. The
subnet chosen among all the eligible is the one closest
to the subnet where the file has been created, where
we measure distance in terms of hops. In the case that
two or more subnets have this property one is chosen
uniformly at random. We call this method min path.

So if we call G(S ,E) the graph associated to the
underlying network infrastructure of subnets, we can
say that a fragment fi is allocated to the subnet s ∈ S
if: s is eligible for fi, Q (s, fi) = 1, s has the minimal
shortest path in G from the subnet of creation of file f .

4.5 Fragment to Node Allocation

Once the subnet for fragment fi has been selected, we
must choose the node where to actually store the frag-
ment. Similarly to what we did before, we introduce
a node-fragment eligibility notion: Given a fragment
fi and a node u ∈N we say that

u is eligible for fi⇐⇒ H2(u| f )≡ fi mod κ (6)

By doing this we have a practical way of enforcing the
single fragment constraint. Briefly, we are again col-
oring fragments and nodes and saying that it is legal
to allocate a fragment within a node only if the colors
match. Since we are using the mod operator we will
have κ contiguous different colors in {0, . . . ,κ− 1}.
Thanks to the fact that we can not have more than κ

fragments of the same file in a subnet, there cannot be
two fragments of the same color.

To perform the real allocation we take advantage
of the fact that the distribution used for the nodes re-
silience and the fragments assurance is the same. For

this reason we decided to use a best-fit type of alloca-
tion. The nodes of a subnet are partitioned into a set
of equivalence classes C. All the nodes with the same
resilience belong to the same class. After that, we
choose the class c ∈C that has the smallest amount of
resilience and that can provide the assurance required
by fi. After that a specific class has been picked up,
one eligible node is taken uniformly at random in the
class.

5 FILE HANDLING

In this section we describe the procedure needed to
create a file, to retrieve it, and to improve the perfor-
mance of read operations by caching.

5.1 File Creation

File creation is performed by a user logged in the sys-
tem at a node. The user chooses the assurance require-
ment of the file, performs the fragmentation process,
computes the allocation, and sends the fragments to
the nodes by encrypting each fragment with the pub-
lic key of the proper node (after checking that the re-
silience of the node on its certificate). Note that com-
puting the file allocation is a local process—the client
has to know only the nodes in the subnet and in the
close neighborhood (just enough to have at least one
subnet per color). The nodes store the fragment in
the clear, or with a base encryption known to all the
potential users of the system.

5.2 File Retrieval

File retrieval requests are issued from the users to ac-
cess a file in the system. Whenever a read request is
issued, the first thing needed to perform the retrieval is
the list of nodes storing a replica of the fragment, one
for each fragment. This part is performed by a dedi-
cated underlying protocol (e.g. Chord, Pastry). Once
the list has been obtained a fragment request is sent to
the closest node storing the fragment, for every frag-
ment. Upon receiving a fragment request, the node
performs the authorization checks (that is, the node
checks that the user has the right to read the file ac-
cording to the policy associated to the file itself) and,
in case, sends the fragment back encrypted with the
client public key. Note that this mechanism supports
dynamic changing of access policies, as, for exam-
ple, the mechanisms described in (di Vimercati et al.,
2007). When the user has obtained all the fragments,
it can reconstruct the file. A file request is an ex-
change of control messages (like the request message)



and payload messages, which are also used as unit of
measurement to determine the request’s cost. A pay-
load message is a message exchanged between two
subnets and containing a file fragment. Retransmis-
sions of payload messages are of course payload mes-
sages. The cost of a file request is the total number of
payload messages needed to complete it. Thanks to
this we have that the cost of a single file request is the
sum of the shortest paths from the requiring subnet
to every fragment. With regards to the cost of a re-
quest, we also introduce the delay as the length of the
longest path from a reader to one of the fragments.

5.3 Caching

In order to reduce the cost of a file request, we intro-
duce caching. In our system, caching is designed in
such a way to preserve the assurance of the file. Upon
receiving a fragment as a response of a fragment re-
quest, if it is a first time read, the user also issues a
cache request. Cache requests can be considered as
brand new allocations originated at the subnet where
the user is logged in. This means they undergo the
same procedures described for a regular allocation.
This technique produces the migration of a file toward
its readers and will improve subsequent reads issued
by the same reader or by one of its neighbor. More-
over, since caching replicates the fragments following
the same rules of the initial allocation, we still guar-
antee that the adversary needs H ( f ) effort to compro-
mise file f . Indeed, when a node is compromised, the
adversary can get at most one fragment of a given file,
even over time and during dynamic re-allocations.

6 LOAD BALANCE

Load balance is a fundamental property to make a
caching system efficient. Given our system model,
there are two independent load balance problems, one
at the node level and one at the subnet level. The first
problem, at the node level, is easy to understand—we
do not want to overload strong nodes compared with
weaker nodes. We have designed the fragmentation
process exactly with this goal in mind. The second
problem, at the subnet level, is less intuitive. Caching
tends to allocate fragments close to the readers. How-
ever, even if the readers are uniformly distributed in
the network, fragments tend to be allocated to a few
“hub” subnetworks. This is intimately related to the
scale-free property of the Internet. Let us discuss the
first problem first.

We know that the nodes’ resilience and fragments’
assurance are distributed with a Pareto’s law denoted
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Figure 3: Fragments kept by a node. Example with 500
nodes per subnet and 10,000 files. Load is balanced.

by the variable Y . Using a best fit policy, the alloca-
tor partitions the nodes of s into equivalence classes
based on their resilience. The best fitting class is then
selected and one node is chosen from such class uni-
formly at random. Since both nodes’ resilience and
fragments’ assurance are identically distributed, we
can expect that fragments are well balanced over the
nodes. In Figure 3 there is an example of an actual
allocation. As we can see the load is evenly balanced
among the nodes. Note that, according to our de-
sign, the best balance we can get at the node level
is the same balance achieved by a uniform distribu-
tion. The load shown in Figure 3 has standard devia-
tion 2.3, compared with the standard deviation of the
same random process according to the uniform dis-
tribution which is 2.0. Therefore, the balance is very
close to optimality.

Let us now approach load balancing at the subnet
level. As said before, the topology of the system is
modeled to be Internet-like. This means that there are
typically few hub subnets with a very high number of
connections, and lots of subnets with very few links.
The method used to establish the eligibility of a sub-
net for a given fragment is unaware of such a structure
(just like many allocation mechanisms in the litera-
ture). This, combined to the fact that the best eligible
subnet chosen by min path is the one connected to the
subnet where the file was created, through the short-
est available path, makes the allocation highly biased
toward the hubs as shown in Figure 4.

In order to avoid this phenomenon, we developed
a method called maxmin path+1. Let f be a file to
be allocated, D the set of distances from the subnet of
creation of f and the subnet used to allocate the frag-
ments according to the initial allocation, and dmax the
greatest element in D. This method consists of allo-
cating every fragment by uniformly choosing an eli-
gible subnet whose distance from the subnet of cre-
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Figure 4: The load among different subnets is not balanced,
hub subnets hold more fragments.
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Figure 5: Method maxmin path+1. Load is balanced, but
delay is increased approximately by one.

ation is in the interval [0 : dmax + 1]. Since the di-
ameter of the whole subnet graph is not high (being
a scale-free network), a plus one increment allows
many more subnets to be reached. Furthermore, by
choosing a subnet at random from a larger set, the
hub problem is greatly mitigated. As show in Figure 5
maxmin path+1 yields a very good load balance. On
the other hand this method has the disadvantage of in-
creasing the average delay. The number of eligible
subnets after the plus one increment is much larger.
Since the final subnet is chosen uniformly at random,
with high probability at least one fragment will be al-
located at distance dmax +1. This will turn into a plus
one increment of the average longest path which, by
definition, is the delay.

6.1 Load-degree Correlation

In order to address the delay increase we designed
a third method. As said before the load is unbal-
anced toward the subnets with the highest degree. We
designed an experiment to determine whether or not
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Figure 6: There is a direct correlation between load and
degree.

there is a relation between the load of a subnet and its
degree. Let C be a fixed set of colors, c a color in C,
and s a c-colored subnet. We define the degree of s as
the number of edges connected to it, while the load is
the number of subnets the would choose s as the des-
ignated subnet to allocate a c-colored fragment. As
we can see from Figure 6 there is a direct correlation
between load and degree.

After observing this property, we implemented
a method called maxmin path. Similarly to
maxmin path+1 this new method uses the interval
[0 : dmax] for the list of eligible subnets (without in-
creasing the delay, this time). The actual node used
to store the fragment is then chosen from such list at
random with a probability of 1/deg(s), where deg(s)
is the degree of subnet s. Taking advantage of the
load-degree correlation, maxmin path, can restrict the
interval. This means that the average delay is left un-
changed, only the average number of messages ex-
changed is slightly increased. We will present results
on delay and traffic in the following sections. Figure 7
shows the load obtained through maxmin path, as can
be seen, it is still excellent.

7 SIMULATION RESULTS

In order to test our system, we used an ad-hoc simu-
lator and run several experiments. The generator used
to create the subnet graph is Inet 3.0 (Jin et al., 2000)
(Winick and Jamin, 2002). Inet can generate graphs
that approximate the topology of the Internet at the
autonomous system level and has already been used
for similar works (Tu et al., 2010) (Kaune et al., 2009)
(Xiao et al., 2010). The authors of Inet suggest to
generate networks with a node number of no less than
3037 nodes in order to achieve a valid graph.
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Figure 7: Method maxmin path. Good load balance and
delay is unchanged.

7.1 Simulation Design

We designed a simple test environment. Multiple
files are allocated by nodes chosen uniformly at ran-
dom. Once the allocation is completed, the read phase
starts. Reads are organized into two rounds, every file
is assigned to a reader node and during a round each
subnet sends out a read request for its designated file.

The first round is used to warm up the caching
system, here all the caching requests are sent by ev-
ery subnet, and the files spread over the entire system
by getting closer to whoever has performed a read op-
eration. During the second round the system is al-
ready running at full stretch and the readers can take
full advantage of the vicinity of a file. Since cached
fragments are kept indefinitely, adding more rounds
would have been useless. The following experiments
were run in a system with 3037 subnets, 500 nodes
per subnet and 10,000.

7.2 Simulation Results

The first experiment that we are going to describe is
about delay. As we can see from Figure 8, by in-
creasing the value of κ, the delay decreases. This
happens because the subnets close to who issued the
request can hold more fragments. As expected, the
maxmin path+1 method approximately produces a
plus one increase on the delay.

Then, we show how κ influences the total number
of messages exchanged in the system. Again, in this
case we observe a general behavior depending on the
method used. For min path, by increasing κ the num-
ber of messages goes down. As before this is caused
by a more intensive use of the closest subnets. On the
other hand we can see that maxmin path+1 presents
almost the opposite pattern, it achieves worse per-
formances due to the use of random choices. While
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Figure 8: κ vs Delay. Increasing values of κ produce a
decreasing delay.
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Figure 9: κ vs number of messages.

whenever min path can put more fragments into a
close subnet it will always do so, maxmin path+1 will
do that much more seldom because for fixed values of
κ it has many more available choices, choices that are
made uniformly at random. Therefore, the influence
of the fact that smaller κ yields a smaller number of
fragments is dominating the performance. Ultimately
maxmin path places in the middle, it will always have
more eligible subnets than min path, but not as many
as maxmin path+1, and its decisions are biased by the
degree of the subnets.

Another interesting value is assurance composi-
tion. As the name suggests it is used to show how
much of the assurance achieved by a file is issued by
the actual nodes and how much is issued by the sub-
nets. We already showed that the total amount of as-
surance achieved by an allocation is given by the 3.
By using that we can calculate the subnet assurance
and the node assurance:

subnet assurance := d g
κeR (s)

d g
κeR (s)+gE(Y )

(7)

node assurance := gE(Y )

d g
κeR (s)+gE(Y )

(8)
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Figure 10: κ vs subnet assurance (red) and node assurance
(blue). Subnet assurance decreases as κ increases and is
compensated by node assurance.

As we can see from Figure 10, with κ = 1 more than
40% of the assurance is issued by the subnets. By
increasing κ that percentage gets lower while the node
security increases. This is a further demonstration of
the importance of κ.

8 CONCLUSIONS

This paper introduced a model that provides guaran-
teed assurance, while achieving good load balancing
both at node and subnet level and good traffic perfor-
mance. The proposed model is dynamically adaptable
through the parameter κ that can react to ongoing at-
tacks and balance the system between higher security
and better performance. We explained how our sys-
tem can store files whose requirement exceed single
nodes capabilities. Future research might focus on
caching replacement policies, file-size driven alloca-
tors and reconfigurable networks.
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